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The goal:

to measure (determine) an unknown quantity x (the value of a RV X)
Realisation: n results: y1, y2, . . ., yj , . . ., yn, (the measured values of
Y1, Y2, . . ., Yj , . . ., Yn) every result is encumbered with an error εj :

yj = x+ εj ; j = 1, 2, . . ., n

the fundamental assumption: the errors are normally distributed
with the expected value equal to zero and with some standard
deviation σ

εj → N(0, σ); E(εj) = 0; E(ε2j ) = σ2

if so, the probability of having a result in the range (yj , yj + dyj) equals
to:

dPj ≡ dP (Yj ∈ (yj , yj + dyj)) =
1√
2πσ

exp

[
− (yj − x)2

2σ2

]
dyj
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Realisation:

dPj ≡ dP (Yj ∈ (yj , yj + dyj)) =
1√
2πσ

exp

[
− (yj − x)2

2σ2

]
dyj

The likelihood function L is then:

L =

n∏
j=1

1√
2πσ

exp

[
− (yj − x)2

2σ2

]
and its logarithm l is:

l = − 1

2σ2

n∑
j=1

(yj − x)2 + a constant

the demand l = maximum →
n∑

j=1

(yj − x)2 = minimum

n∑
j=1

ε2j = minimum

The sum of the squares of the errors should be as small as possible if the
determination of x̂ is to be the most plausible.
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Realisation, cntd.

The ML estimator is the arithmetic mean:

x̂ = ȳ =
1

n

n∑
j=1

yj , σ2(x̂) =
σ2

n

or, if the errors connected with individual measurements are different:

x̂ =

∑n
j=1 wjyj∑n
j=1 wj

[
wj =

1

σ2
j

]
, σ2(x̂) =

 n∑
j=1

1

σ2
j

−1

Now, if x̂ was the best estimator of X (ML estimator) of RV X then the
quantities

ε̂j = yj − x̂

are the best estimators of the quantities εj !!
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We may construct a statistic:

M =

n∑
j=1

(
ε̂j
σj

)2

=

n∑
j=1

(yj − x̂)2

σ2
j

=

n∑
j=1

(yj − x̂)2wj

If the εj have a normal distribution the RV M should have a χ2

distribution with n− 1 degrees of freedom. This hypothesis may be
verified (tested). A positive result of the test supports the data
treatment. A negative one calls for an extra analysis of the determination
procedure.
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An example (from: S. Brandt, Data analysis

measuring the mass of the K0 meson: (all data in MeV/c2)

m1 = 498.1; σ1 = 0.5,

m2 = 497.44; σ2 = 0.33,

m3 = 498.9; σ3 = 0.4,

m4 = 497.44; σ4 = 0.4,

x̂ =

4∑
j=1

yj ×
1

σ2
j

4∑
j=1

1

σ2
j

= 497.9 V AR(x̂) =

 4∑
j=1

1

σ2
j

−1

= 0.20

M =

4∑
j=1

(yj − x̂)2
1

σ2
j

= 7.2 χ2
0.95;3 = 7.82

there is no reason for discrediting the above scheme of establishing the
value of x.
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LINEAR REGRESSION

LINEAR REGRESSION is a powerfull tool for studying fundamental
relationships between two (or more) RVs Y and X. The method is based
on the method of least squares. Let’s discuss the simplest case possible:
we have a set of bivariate data, i.e. a set of (xi, yi) values and we
presume a linear relationship between the RV Y (dependent variable,
response variable) and the explanatory (or regressor or predictor) variable
X. Thus we should be able to write:

ŷi = B0 +B1 × xi

Note: Yi are RVs, and yi are their measured values; ŷi are the fitted
values, i.e. the values resulting from the above relationship. We assume
this relationship be true and we are interested in the numerical
coefficients in the proposed dependence. We shall find them via an
adequate treatement of the measurement data.
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LINEAR REGRESSION, cntd.

As for xi — these are the values of a random variable too, but of a
rather different nature. For the sake of simplicity we should think about
Xi (or the values xi) as of RV that take on values practically free of any
errors (uncertainties). We shall return to this (unrealistic) assumption
later on. 1 The errors εi are to be considered as differences between the
measured (yi) and the ”fitted” quantities:

εi = yi − ŷi ≡ yi − (B0 +B1 × xi)

As in the former case, we shall try to minimise the sum of the error
squares (SSE): Q =

∑
ε2i ; it is not hard to show that this sum may be

decomposed into 3 summands:

Q = Syy(1− r2) +
(
B1

√
Sxx − r

√
Syy

)2
+ n (ȳ −B0 +B1x̄)

2
.

1One can imagine a situation when the values of the predictor variable xi had been
”carefully prepared” prior to measurement, i.e. any errors connected with them are
negligible. On the other hand, the yi values must be measured ”on-line” and their
errors should not be disregarded.
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LINEAR REGRESSION, cntd.

Q = Syy(1− r2) +
(
B1

√
Sxx − r

√
Syy

)2
+ n (ȳ −B0 +B1x̄)

2
.

The symbols used are:

Sxx =
∑
i

(xi − x̄)2 =
∑
i

x2i − nx̄2

Syy =
∑
i

(yi − ȳ)2 =
∑
i

y2i − nȳ2

Sxy =
∑
i

(xi − x̄)(yi − ȳ) =
∑
i

xiyi − nx̄ȳ

The x̄ and ȳ are the usual arithmetic means; finally

r =
Sxy√

Sxx

√
Syy

is the sample estimator of the correlation coefficient.
In order to minimise Q we are free to adjust properly the values of B0

and B1. It is obvious that Q will be the smallest if the following
equations are satisfied:
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LINEAR REGRESSION, cntd.

Q = Syy(1− r2) +
(
B1

√
Sxx − r

√
Syy

)2
+ n (ȳ −B0 +B1x̄)

2
.

B1

√
Sxx − r

√
Syy = 0

ȳ −B0 +B1x̄ = 0.

We shall denote the solutions for the values of B0 (intercept) and B1

(slope) coefficients which minimise the sum of squares in a special way:

β̂1 =
r
√
Sxx√
Syy

=
Sxy

Sxx
β̂0 = ȳ − β̂1x̄

With the relation: y = β̂0 + β̂1x the SSE has minimum: Q = Syy(1− r2).
(N.B. this may be used to show that |r| must be ≤ 1.) For r > 0 the
slope of the straight line is positive, and for r < 0 – negative.
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LINEAR REGRESSION, cntd.

The r quantity (the sample correlation coefficient) gives us a measure of
the adequacy of the assumed model (linear dependence). It can be easily
shown that the total sum of squares, SST =

∑
i(yi − ȳ)2 can be

decomposed into a sum of the regression sum of squares, SSR and the
introduced already error sum of squares, SSE:∑

i

(yi − ȳ)2 =
∑
i

(ŷi − ȳ)2 +
∑
i

(yi − ŷi)2

or SST = SSR+ SSE

SST is a quantity that constitutes a measure of total variability of the
‘true’ observations; SSR is a measure of the variability of the fitted
values, and SSE is a measure of ‘false’ (‘erroneous’) variability. We have:

1 =
SSR

SST
+
SSE

SST

but: SSR = SST − SSE = SST − SST (1− r2) = r2SST . Thus the
above unity is a sum of two terms: the first of them is the square of the
sample correlation coefficient, r2 and it’s sometimes called the coefficient
of determination. The closer is r2 to 1 the better is the (linear) model.
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LINEAR REGRESSION, cntd.

Up to now nothing has been said about the random nature of the fitted
coefficients, B0, B1. We tacitly assume them to be some real numbers –
coefficients in an equation. But in practice we calculate them from
formulae that contain values of some RVs. Conclusion: B0, B1 should be
also perceived as RVs, in that sense that their determination will be
accomplished also with some margins of errors. The ”linear relationship”
should be written in the form:

Yi = B0 +B1Xi + εi, i = 1, . . . , n

or perhaps2

Yi = β0 + β1Xi + εi, i = 1, . . . , n

where εi are errors, i.e. all possible factors other than the X variable that
can produce changes in Yi. These errors are normally distributed with
E(εi) = 0 and V AR(εi) equal σ2. From the above relation we have:
E(Yi) = β0 + β1xi and V AR(Yi) = σ2 (remember: any errors on xi are
to be neglected). The simple linear regression model has three unknown
parameters: β0, β1 and σ2.

2This change of notation reflects the change of our atitude to the fitted
coefficients; we should think about them as about RVs.
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LINEAR REGRESSION, cntd.

The method of least squares allows us to find the numerical values of the
beta coefficients – theses are the ML estimators and they should be
perceived as the expected values:

E(β1) = β̂1 =
r
√
Sxx√
Syy

=
Sxy

Sxx

E(β0) = β̂0 = ȳ − β̂1x̄

As for the variances we have:

V AR(β1) =
σ2

Sxx

V AR(β0) = σ2

(
1

n
+

x̄2

Sxx

)
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verification

E(β1) = E

{
Sxy

Sxx

}
= E

{∑
i

(xi − x̄)(Yi − Ȳ )

Sxx

}
?
= E

{∑
i

(xi − x̄)Yi
Sxx

}

=
∑
i

(xi − x̄)(β0 + β1xi)

Sxx
= β0

∑
i

(xi − x̄)

Sxx
+

β1
Sxx

∑
i

(xi−x̄)xi

?
= 0 +

β1
Sxx

∑
i

(xi−x̄)(xi−x̄) =
β1
Sxx

Sxx = β1

V AR(β1) = V AR

{
SxY

Sxx

}
= V AR

{∑
i

(xi − x̄)(Yi − Ȳ )

Sxx

}
?
=

∑
i

(xi − x̄)2

S2
xx

× V AR(Yi) =
Sxx

S2
xx

× σ2 =
σ2

Sxx

(some manipulations —
?
= — should be carefully justified; for β0 the

verification can be done in a similar manner)
The third parameter of the simple linear regression model is σ2. It may
be shown that the statistic
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verification, cntd.

s2 =
SSE

n− 2
=

∑
i(yi − ŷi)2

n− 2

is an unbiased estimator of σ2.
(The n− 2 in the denominator reflects the fact that the data are used for
determining two coefficients). The RV (n− 2)s2/σ2 has a chi-square
distribution with n− 2 degrees of freedom. Replacing the values of σ2 in
the formulae for the variances of the beta coefficients by the sample
estimator s we conclude that these coefficients can be regarded as two
standardised random variables:

β1 − β̂1
s
√
Sxx

and
β0 − β̂0

s

√
1

n
+

x̄2

Sxx

.
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verification, cntd.

The -̂values are the ML estimators and the denominators are the
estimated standard errors of our coefficients. Both standardised variables
have a Student’s distribution with the n− 2 degrees of freedom. Their
confidence intervals can de determined in the usual way.
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