2D NORMAL DISTRIBUTION

2-D NORMAL DISTRIBUTION ...

RV (X,Y); given: E{X} = \hat{x} , E{Y} = \hat{y} , σ_X , σ_Y , $COV(X,Y) = \rho \cdot \sigma_X \sigma_Y$

The RV (X,Y) has the 2-D normal distribution — the joint distribution function f(x,y)=

$$\frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}\cdot\exp\left\{-\frac{1}{1-\rho^2}\left[\frac{(x-\hat{x})^2}{2\sigma_X^2}-\frac{(x-\hat{x})(y-\hat{y})}{\sigma_X\sigma_Y}\rho+\frac{(y-\hat{y})^2}{2\sigma_Y^2}\right]\right\}$$

ISOLINES ...

the iso-lines —
$$f(x,y) = const$$

$$\left[\frac{(x-\hat{x})^2}{2\sigma_X^2} - \frac{(x-\hat{x})(y-\hat{y})}{\sigma_X\sigma_Y}\rho + \frac{(y-\hat{y})^2}{2\sigma_Y^2}\right] = (1-\rho^2) * const$$

ISOLINES ...

putting const = 1 the above equation describes an ellipse whose central point is (\hat{x}, \hat{y}) , inserted into a rectangle whose sides are $2\sigma_X$ i $2\sigma_Y$:

SUCH ELLIPSES ARE CALLED COVARIANCE ELLIPSES play: Joint Density of Bivariate Gaussian Random Variables.cfg